Vaccinated Read online

Page 20


  That’s the problem with vaccines. When they work, absolutely nothing happens. Nothing. Parents go on with their lives, not once thinking that their child was saved from meningitis caused by Hib or from liver cancer caused by hepatitis B or from fatal pneumonia caused by pneumococcus or from paralysis caused by polio. We live in a state of blissful denial. But somebody was getting those diseases. Before pharmaceutical companies made the Hib vaccine in the early 1990s, every year about ten thousand children were stricken with meningitis, leaving many blind, deaf, and retarded. Today, fewer than fifty children every year suffer this disease. But who are the thousands of children who aren’t getting Hib today? What are their names? We don’t know. And that’s what makes vaccines—or any prevention—so much less compelling than treatment. We spend hundreds of millions of dollars on bone marrow transplants and lung transplants and kidney transplants and heart transplants. These therapies are extraordinarily expensive, and they certainly don’t save money for the health care system or society. But when we know a person who is sick, we’ll stop at nothing to help. Unfortunately, we seem perfectly willing to withhold life-saving vaccines when we don’t know who is going to be sick. We’re willing to take that gamble—a gamble that many children will inevitably lose.

  RELIGIOUS AND CONSERVATIVE GROUPS ALSO OCCASIONALLY OPPOSE vaccines. For example, the papillomavirus vaccine, capable of preventing the virus that causes cervical cancer, has become a political vaccine.

  Every year in the United States, cervical cancer strikes about ten thousand women and kills four thousand. In 2006 the CDC recommended the papillomavirus vaccine for all adolescent girls before they become sexually active. Conservative groups feared that the vaccine would be mandated for all teenagers. They reasoned that papillomavirus is transmitted by a girl’s having sex. If she doesn’t have sex, she won’t catch it. And if she and her partner don’t have sex before marriage, then they won’t be bringing papillomavirus into the marriage. The message should be abstinence before marriage, not prevention of a sexually transmitted disease by a vaccine that might only encourage sex. Tony Perkins is the president of the Family Research Council. He has no intention of vaccinating his thirteen-year-old daughter. “Our concern is that this vaccine will be marketed to a segment of the population that should be getting a message about abstinence,” said Perkins. Leslie Unruh, leader of the National Abstinence Clearinghouse, agrees. “I personally object to vaccinating children against a disease that is one hundred percent preventable with proper sexual behavior.” Art Caplan, director of the Center for Bioethics at the University of Pennsylvania, disagrees with Perkins and Unruh. “If you want to teach moral behavior to your children, teach it in the home or in the classroom or in the church or synagogue,” he says. “But the notion of withholding a potentially lifesaving vaccine to promote moral behavior is unconscionable.”

  ANOTHER FORCE WORKING AGAINST VACCINES IS CAPITALISM. VACCINES aren’t very profitable.

  Unlike drugs that are often used every day, vaccines are used, at most, several times in a person’s lifetime. So it isn’t surprising that the market for drugs is substantially greater than that for vaccines. For example, the pneumococcal vaccine for children, the highest revenue-generating vaccine, had gross sales in 2006 of about $2 billion. But cholesterol-lowering agents, hair-loss products, sexual-potency drugs, or drugs for heart disease, obesity, or neurological problems can earn $7 billion or more per drug per year. Annual revenues for Lipitor, one of several cholesterol-lowering agents, were $13 billion—about twice the revenues for the entire worldwide vaccine industry.

  Faced with these finances, companies have gradually abandoned vaccines. Twenty-six companies made vaccines in 1957; seventeen in 1980. Only five—GlaxoSmithKline, Sanofi-Pasteur, Merck, Wyeth, and Novartis—have a significant market presence today. (Many smaller companies also make vaccines, but their combined output accounts for less than 15 percent of the total market.) Within pharmaceutical companies, vaccines compete with drugs for resources—and lose. Because vaccines are made by only a few companies, problems with production often result in vaccine shortages. The influenza vaccine shortages from 2003 to 2005 were just one example. Since 1998, ten of sixteen vaccines routinely recommended for children have been in short supply—specifically, those to prevent measles, mumps, rubella, chickenpox, tetanus, diphtheria, pertussis, influenza, meningococcal infection, and pneumococcal infection. In 2002, Wyeth stopped making the DTaP and influenza vaccines. The decision to stop production had little impact on shareholders but a major impact on children. It precipitated shortages of and rationing for both vaccines. Some children never got the vaccines that they missed, even after the shortages were over.

  Fortunately, the news about the vaccine business isn’t all bad. Vaccines do have a couple of advantages over drugs. For example, no companies make generic vaccines for the United States market. So vaccines can continue to make a profit long after they’re unprotected by patents. Also, unlike drugs, vaccines are recommended for routine use by agencies such as the CDC and the AAP, guaranteeing a market. Newer vaccines, such as those for rotavirus and meningococcus, are likely to make between $500 million and $1 billion per year and the papillomavirus vaccine could bring in revenues that exceed $2 billion. While revenues from vaccines are less than for blockbuster drugs, they are good enough to keep some pharmaceutical companies interested in continuing to make them and to invest in research to develop new ones.

  IMAGINE WHAT WOULD HAPPEN IF SOME COMBINATION OF FORCES caused pharmaceutical companies to stop making vaccines or a critical number of people in the United States to stop using them.

  The first disease to appear would be whooping cough (pertussis). Although most people don’t realize it, pertussis occurs commonly in the United States. Every year it causes people to suffer prolonged bouts of coughing that last as long as several weeks. About one million teenagers and adults are infected. Adults don’t die of pertussis. But babies do. And infants usually catch pertussis from infected adults. Pertussis bacteria cause inflammation in their small windpipes. Sometimes the inflammation is so severe that babies simply stop breathing. If the pertussis vaccine weren’t available, babies would almost immediately start to die of pertussis.

  Before the pertussis vaccine was first introduced in the 1940s, pertussis killed as many as eight thousand babies every year in the United States. Some people might argue that the 1940s were a long time ago and that we now have at our disposal antibiotics and intensive care facilities that we didn’t have then. But antibiotics don’t treat pertussis; they only stop transmission of the bacteria, making people with the disease less contagious, not less sick. When immunization rates in England dropped from 80 percent to 30 percent in the late 1970s, more than one hundred thousand children with pertussis were hospitalized, and about seventy died. And that was all within a couple of years of a fifty-point decrease in immunization rates.

  Within a few years, measles, which has been virtually eliminated from the United States, would again find a home. Although measles infections are very rare in the United States, they’re not rare in the world; every year about thirty million people are infected with the virus. Because international travel is common, people with measles often come into the United States. For example, in May 2006 an unimmunized computer programmer brought measles with him from India. He worked at the John Hancock Tower, Boston’s tallest building and home to five thousand other workers. Anita Barry, Boston’s public health commissioner, remembered what happened when the city first offered vaccine to company workers: “Only about thirty people showed up at that initial clinic,” she said. “I wish that a lot more people had shown up. And so did the company, given subsequent events.” Soon the virus spread to others in the building. Then it traveled a few blocks, infecting a member of the Christian Science Church, a group that doesn’t believe in immunizations. “It’s actually more contagious than smallpox,” said Alfred DeMaria, Massachusetts’s chief infectious diseases official. When fourteen more people
were infected and the media alerted Boston residents of the growing outbreak in the Hancock Tower, thousands of people were vaccinated, and the outbreak subsided. But imagine what would have happened if no one in the John Hancock Tower had been immunized.

  When enough people are unimmunized, rubella would again cause birth defects and fetal death. And mumps would be a common cause of deafness. In 2006 a mumps epidemic swept across several Midwestern states. The virus infected four thousand people, mostly young adults, causing seizures, meningitis, and deafness in about thirty people. The strain of mumps virus that was isolated in the United States was the same as the one recently found circulating in England, where seventy thousand people were infected. The outbreak in England was worse because many more people were unimmunized, scared by the false concern that the MMR vaccine caused autism.

  Next up would be the bacterium Haemophilus influenzae type b (Hib). Before the vaccine, Hib caused meningitis and bloodstream infections in tens of thousands of children every year. And the Hib vaccine wasn’t introduced in the United States until the mid-1980s, well after several antibiotics were available to treat the disease. Despite the availability of these antibiotics, Hib caused mental retardation, speech disorders, language delays, hearing deficits, and paralysis in many of those infected. Although antibiotics save lives, they aren’t given until after the infection has already started, often too late to prevent permanent harm.

  After about ten years in which babies were no longer immunized, polio would return, allowing younger Americans to experience firsthand what their parents and grandparents had experienced in the 1940s and 1950s. Again, parents would be scared to let their children go swimming in the summer or drink from water fountains or congregate in movie theaters or play with neighbors. This scenario isn’t so far-fetched. In 1978 and again in 1992, outbreaks of polio occurred among members of a Dutch Reformed Church in the Netherlands who refused vaccines, causing paralysis in several children. Fortunately, the disease didn’t spread to neighbors because 98 percent of people who came in contact with these children had been immunized. But if immunization rates had been only 50 percent or 0 percent, the outcome would have been very different.

  When there were enough susceptible children, diphtheria would return. In the early 1990s, during the collapse of the Soviet Union, many children there didn’t get the vaccines they needed. It wasn’t long before diphtheria reappeared, causing disease in fifty-thousand people. The bacterium that causes diphtheria is still out there; if we lower our defenses, the disease will be back. And we will again be able to experience what it was like for our ancestors, who, in the 1920s, feared diphtheria as one of the greatest killers of teenagers.

  Given other advances in modern medicine, some might argue that we are better able to handle the onslaught of infectious diseases now than we were fifty years ago. But in some ways we’re worse off. Intensive care units in hospitals today care for hundreds of cases of severe infections every year, not tens of thousands. Facilities to handle the sudden increase in infections that would inevitably follow a dramatic decline in immunization rates don’t exist. Furthermore, intensive care units today take care of a much more vulnerable group of patients, such as severely premature babies and bone marrow or organ transplant recipients. Also, because of the widespread use of drugs like steroids, which suppress the immune system, many more people in the United States have weakened immune systems today than they did fifty years ago. As a consequence, they are far more susceptible to harm caused by highly contagious infections.

  A return to a time before vaccines would also affect the workplace. Fifty years ago, most mothers stayed home to take care of their children. But today women work outside the home. If infectious diseases like measles, mumps, Hib, polio, and diphtheria returned, one parent would be forced to spend at least several more weeks every year staying home to take care of sick children. Day care centers, where spread of these diseases would be rapid, would be particularly vulnerable. The result would be a major disruption of the workforce necessary to provide goods and services, and billions of dollars in lost wages.

  We don’t have to go back in time to see what life was like before vaccines. If we want to get a peek into a future without vaccines, we could take a trip to sub-Saharan Africa or India or Pakistan and watch children suffer and die of diseases now prevented by vaccines, remembering that about half of these children are actually vaccinated. From measles alone, about five hundred thousand children die every year.

  “DESPITE ALL OF SOCIETY’S NEGATIVE PRESSURES, VACCINATION HAS proven itself beyond the shadow of doubt to be the most logical way to control infectious diseases in a community,” says Adel Mahmoud, the parasitologist mentioned earlier who grew up in Egypt, a country devastated by infectious diseases. “The success story is undeniable. There is no measles, a little bit of mumps, no rubella, a little bit of hepatitis B in many communities. And the reason is vaccination. Vaccination is an unbelievably smart way of changing the environment for pathogens in human populations. It is as ecologically important as anything that we have discovered in our long history in the fight between us and the microbes. But it’s not free. It comes with a price, an imperative. And that is that you have to keep using it.”

  CHAPTER 11

  Unrecognized Genius

  One of these men is genius to the other; And so of these. Which is the natural man, And which the spirit? Who deciphers them?

  WILLIAM SHAKESPEARE, COMEDY OF ERRORS

  Here was a guy,” said Walter Strauss, senior director of epidemiology research at Merck, “born on some windswept ranch in Montana, practically orphaned at birth, taken in by relatives, and who, but for his talent and drive, might have spent a lifetime working as a clerk at a retail store. Instead he rose to the pinnacle of scientific achievement in the United States, leaving his mark on half the world’s children. It is one of the greatest of all Horatio Alger stories.”

  Hilleman didn’t see his career as improbable, reasoning that his farming background was perfect training for a scientist to create life-saving vaccines. “We had a machine shop, an electrical shop, and a blacksmith shop,” he said. “You learned agronomy. We tore apart irrigation pumps and put them back together. And I had an old 1928 Ford, nothing but a wreck. But I rebuilt [it] and made it a functioning car. When you’re brought up on a farm, you have a lot of general knowledge.” At Custer County High School Hilleman had the option of majoring in general farming, mechanics, science, business, or academics. He chose science. So did all of his brothers. And, like Hilleman, all were successful. Howard, a professor of anatomy and physiology at the University of Oregon, wrote a textbook on invertebrate anatomy. “He had a photographic memory,” recalled Hilleman. Victor ran a landscaping unit for FDR’s Civilian Conservation Corps and later built ships and airplanes. Harold designed and built propeller planes for Lockheed. Richard supervised the installation of electrical systems in planes, also for Lockheed. Norman was a radar specialist for the federal government. “He liked to memorize all of the radar circuitry,” recalled Hilleman. The only brother who didn’t choose a life in science or engineering was Walter, who graduated from Concordia College and was about to be ordained as a Lutheran minister when he died on the operating table of an undiagnosed case of appendicitis; he was nineteen years old.

  Although all of his brothers were successful, Maurice’s relentless, unending drive was unique. When asked to explain this difference, Hilleman would invariably talk about his father, saying “I wanted to get him to see me.” Hilleman, raised by his aunt and uncle, hated his father for the perceived rejection. “I found [my father’s] narrow-minded, domineering opinions and intrusions insufferable and unforgivable,” recalled Hilleman. “The antagonism that I [felt] toward him was taken out on [my] occasional outbursts and his threats of physical harm. There was no resolution.” But nothing ever erased the pain of getting up every day to watch his brothers and sister grow up in a house with their father—his father. Never recognized by his father, each of
Hilleman’s many accomplishments was just one spade of dirt in a bottomless hole.

  AS A CHILD, HILLEMAN “CHEATED DEATH.” NEITHER HIS MOTHER nor his twin sister survived his birth. If Hilleman hadn’t survived, would we still have the same vaccines that we do today? Most likely all of his vaccines would have been developed eventually by others, with two exceptions: the blood-derived hepatitis B vaccine and the mumps vaccine. Only Maurice Hilleman had the foresight to treat human blood with chemicals, prove that he could kill any possible contaminating organism, and purify Australia antigen from the mix. No one else had the resources, intelligence, and guts to do this. With the appearance of HIV in the blood supply, the task was seen as too dangerous. But for the five years when Hilleman’s blood-derived hepatitis B vaccine was the only one available to prevent hepatitis B virus infections, millions of doses were sold, and thousands of lives were saved. Also, no one has ever developed a better mumps vaccine than the one Hilleman made from the virus that infected his daughter. And it wasn’t for lack of trying. In the 1960s a mumps vaccine made in Russia, called the Leningrad strain, and one made in Japan, called the Urabe strain, were licensed and sold. Both of these vaccines worked well to eliminate mumps infections and were on the market for decades. But both also came with a price: they occasionally caused meningitis. The Jeryl Lynn strain of mumps vaccine didn’t cause this dangerous side effect.